Рассмотрим следующее "магическое" треугольное кольцо, заполненное числами от 1 до 6, с суммой на каждой линии равной 9.
Проходя по направлению часовой стрелки, начав с группы с наименьшим внешним узлом (в данном примере: 4,3,2), каждое решение можно описать единственным образом. К примеру, вышеуказанное решение можно описать множеством: 4,3,2; 6,2,1; 5,1,3.
Существует возможность заполнить кольцо с четырьмя различными суммами на линиях: 9, 10, 11 и 12. Всего существует восемь решений.
Сумма | Множество решений |
9 | 4,2,3; 5,3,1; 6,1,2 |
9 | 4,3,2; 6,2,1; 5,1,3 |
10 | 2,3,5; 4,5,1; 6,1,3 |
10 | 2,5,3; 6,3,1; 4,1,5 |
11 | 1,4,6; 3,6,2; 5,2,4 |
11 | 1,6,4; 5,4,2; 3,2,6 |
12 | 1,5,6; 2,6,4; 3,4,5 |
12 | 1,6,5; 3,5,4; 2,4,6 |
Объединяя элементы каждой группы, можно образовать 9-тизначную строку. Максимальное значение такой строки для треугольного кольца составляет 432621513.
Используя числа от 1 до 10, в зависимости от расположения, можно образовать 16-тизначные и 17-тизначные строки. Каково максимальное значение 16-тизначной строки для "магического" пятиугольного кольца?