Задача 240
Старшие кубики
Существует 1111 способов, как пять шестигранных кубиков (грани пронумерованы от 1 до 6) можно бросить так, чтобы три старших кубика (три самых больших из полученных значений) в сумме давали 15. Вот несколько примеров:
D1,D2,D3,D4,D5 = 4,3,6,3,5
D1,D2,D3,D4,D5 = 4,3,3,5,6
D1,D2,D3,D4,D5 = 3,3,3,6,6
D1,D2,D3,D4,D5 = 6,6,3,3,3
Сколькими способами можно бросить двадцать 12-гранных кубиков (грани пронумерованы от 1 до 12) так, чтобы сумма десяти старших кубиков была 70?
© Проект Эйлера | Translated problems from ProjectEuler.net