Задача 157
Поиск решений уравнения Диофанта вида 1/a +1/b= p/10n

Рассмотрим уравнение Диофанта ^(1)/_(a)+^(1)/_(b)= ^(p)/_(10^(n)), где a, b, p, n - положительные целые числа, притом ab.
При n=1 у этого уравнения 20 корней, которые перечислены ниже:

^(1)/_(1)+^(1)/_(1)=^(20)/_(10) ^(1)/_(1)+^(1)/_(2)=^(15)/_(10) ^(1)/_(1)+^(1)/_(5)=^(12)/_(10) ^(1)/_(1)+^(1)/_(10)=^(11)/_(10) ^(1)/_(2)+^(1)/_(2)=^(10)/_(10)
^(1)/_(2)+^(1)/_(5)=^(7)/_(10) ^(1)/_(2)+^(1)/_(10)=^(6)/_(10) ^(1)/_(3)+^(1)/_(6)=^(5)/_(10) ^(1)/_(3)+^(1)/_(15)=^(4)/_(10) ^(1)/_(4)+^(1)/_(4)=^(5)/_(10)
^(1)/_(4)+^(1)/_(20)=^(3)/_(10) ^(1)/_(5)+^(1)/_(5)=^(4)/_(10) ^(1)/_(5)+^(1)/_(10)=^(3)/_(10) ^(1)/_(6)+^(1)/_(30)=^(2)/_(10) ^(1)/_(10)+^(1)/_(10)=^(2)/_(10)
^(1)/_(11)+^(1)/_(110)=^(1)/_(10) ^(1)/_(12)+^(1)/_(60)=^(1)/_(10) ^(1)/_(14)+^(1)/_(35)=^(1)/_(10) ^(1)/_(15)+^(1)/_(30)=^(1)/_(10) ^(1)/_(20)+^(1)/_(20)=^(1)/_(10)

Сколько решений имеет такое уравнение при 1 ≤ n ≤ 9?

Оригинал
 
© Проект Эйлера | Translated problems from ProjectEuler.net